Exercise 12

Find the particular solution for each of the following initial value problems:

$$
u^{\prime}+(\tan x) u=\cos x, \quad u(0)=1
$$

Solution

This is an inhomogeneous first order linear ODE, so we can multiply both sides by the integrating factor,

$$
I(x)=e^{\int \tan x d x}=e^{-\ln \cos x}=\sec x,
$$

to solve it. The equation becomes

$$
(\sec x) u^{\prime}+(\sec x)(\tan x) u=1
$$

Observe that the left side can be written as $[(\sec x) u]^{\prime}$ by the product rule.

$$
\frac{d}{d x}[(\sec x) u]=1
$$

Now integrate both sides with respect to x.

$$
(\sec x) u=x+C
$$

The general solution is thus

$$
u(x)=\cos x(x+C)
$$

Because an initial condition is given, this constant of integration can be determined.

$$
u(0)=\cos 0(0+C)=C \quad \rightarrow \quad C=1
$$

Therefore,

$$
u(x)=\cos x(x+1)
$$

